

Course title ECTS code Wykład monograficzny - Technologie zaawansowanego 13.3.1033 utleniania/Monographic lecture - Advanced oxidation processes

Name of unit administrating study

Faculty of Chemistry

I		Studies		
	Field of study	Type	Form	
I	Chemical business	Master	Full-time studies	

Teaching staff

Prof. dr hab. Ewa Siedlecka		
Forms of classes, the realization and number of hours A. Forms of classes, in accordance with the UG Rector's regulations	classes 30 h tutorial classes 10 h	
Lecture B. The realization of activities	student's own work 35 h Total: 75 h - 3 ECTS	
In-class learning		
Number of hours lecture 30 h		

The academic cycle

2021/2022 summer semester

Type of course obligatory	Language of instruction Polish
Teaching methods Lectures including multimodal prasentations	Form and method of assessment and basic criteria for evaluation or examination requirements
Problem lecture	A. Final evaluation, in accordance with the UG study regulations Course completion (with a grade)
	B. Assessment methods Oral assesment
	C. The basic criteria for evaluation or exam requirements
	• Positive assessment of oral credit according to criteria in accordance with the University of Gdansk Studies Regulations

Required courses and introductory requirements

- a. Formal requirements none
- b. Prerequisites General and organic chemistry

Aims of education

- -To familiarize students with the mechanisms of degradation of pollutants in selected advenced oxidation processes
- To familiarize students with the selected devices used for the treatment of liquid and gas streams by AOP

Course contents

A. Lecture topics:

Characterization and classification of advanced oxidation processes (AOP). The mechanism of oxidation of pollutants in the method of wet air oxidation and supercritical oxidation. Characteristics of chemical, photochemical and electrochemical processes for removing impurities from water, soil and air. Production and application of modern materials with catalytic properties in AOP methods. Application of nanostructures in AOP methods. The use of ozonation for disinfection, removal of organic compounds from the water phase and for deodorization of air streams.

Bibliography of literature

- A. Literature required to pass the course
- A. Literatura wymagana do ostatecznego zaliczenia zajęć (zdania egzaminu):
 - A.1. wykorzystywana podczas zajęć
- 1. Barbusiński, Zaawansowane utlenianie ścieków przemysłowych, Politechnika Śląska, 2013r.
- 2. Burczyk B. Zielona Chemia, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006
- 3. Lewandowski W.M. Proekologiczne żródla energii odnawialnej, WNT W-wa 2001
- 4. Zarzycki R., Zaawansowane metody utleniania, Politechnika Wrocławska, Wrocław 2002.
- A.2. studiowana samodzielnie przez studenta

Materials prepared by the teacher

B. Extracurricular readings