

| Course title                                                           |                                                                                                       |                                                                                                                                                    | ECTS code            |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Wykład dyplomowy - Podstawy in                                         | nżynierii genetycznej/D                                                                               | iploma lectur                                                                                                                                      | re - 13.3.0908       |  |
| Essentials of genetic engineering                                      | -                                                                                                     |                                                                                                                                                    |                      |  |
| Name of unit administrating stu                                        | dy                                                                                                    |                                                                                                                                                    |                      |  |
| Faculty of Chamistry                                                   |                                                                                                       |                                                                                                                                                    |                      |  |
| Faculty of Chemistry                                                   |                                                                                                       | Studies                                                                                                                                            |                      |  |
| Field of study                                                         | Туре                                                                                                  |                                                                                                                                                    |                      |  |
| Tield of Study                                                         | Type                                                                                                  |                                                                                                                                                    | FOIM                 |  |
| Chemistry                                                              | Bachelor                                                                                              |                                                                                                                                                    | Full-time studies    |  |
| <b>Teaching staff</b><br>Dr hab. Agnieszka Żylicz-Stachul              | a, prof. UG                                                                                           |                                                                                                                                                    |                      |  |
| Forms of classes, the realization                                      |                                                                                                       | ECTS credits                                                                                                                                       |                      |  |
| A. Forms of classes, in accor regulations                              | ector's                                                                                               | classes 30 h<br>tutorial classes 5 h<br>student's own work 15 h                                                                                    |                      |  |
| lecture                                                                |                                                                                                       |                                                                                                                                                    | TOTAL: 50 h - 2 ECTS |  |
| B. The realization of activiti                                         | es                                                                                                    |                                                                                                                                                    |                      |  |
| In-class learning<br>C. Number of hours                                |                                                                                                       |                                                                                                                                                    |                      |  |
| c. Number of hours<br>lecture 30 h                                     |                                                                                                       |                                                                                                                                                    |                      |  |
| The academic cycle 2021/2022 summer semester                           | ſ                                                                                                     |                                                                                                                                                    |                      |  |
| Type of course                                                         |                                                                                                       | Language of instruction                                                                                                                            |                      |  |
| obligatory                                                             |                                                                                                       | Polish                                                                                                                                             |                      |  |
| <b>Teaching methods</b><br>Lectures including multimodal presentations |                                                                                                       | Form and method of assessment and basic criteria for evaluation or examination requirements                                                        |                      |  |
|                                                                        |                                                                                                       | <b>A. Final evaluation, in accordance with the UG study regulations</b><br>Course completion (with a grade)                                        |                      |  |
|                                                                        |                                                                                                       | B. Assessm                                                                                                                                         | ent methods          |  |
|                                                                        |                                                                                                       | test                                                                                                                                               |                      |  |
|                                                                        |                                                                                                       | The basic criteria for evaluation                                                                                                                  |                      |  |
|                                                                        |                                                                                                       | • final written test consisting of test questions, open tasks and simulation exercises, covering issues mentioned in the lecture's program content |                      |  |
|                                                                        |                                                                                                       | • final grade according to the scale of grades given in the Study Regulations                                                                      |                      |  |
|                                                                        | • supplementary written evaluation for students who did not obtain the required 51% in the first term |                                                                                                                                                    |                      |  |

B. **Prerequisites** proper use of the chemical/biological terminology and nomenclature, knowledge of the basic functions and structure of the prokaryotic and eukaryotic cell, knowledge of cellular biochemical processes

Aims of education

- acquainting students with all issues mentioned in the lecture's program content
- acquainting students with the basic properties of biological macromolecules: DNA, RNA and proteins;



- acquainting students with selected mechanisms of genetic regulation in gene expression;
- acquainting students with the current possibilities, limitations and the anticipated trends in modern genetic engineering and molecular biotechnology

### **Course contents**

genetic engineering and molecular biotechnology: concepts, history, achievements, perspectives, threats; recombinant microorganisms and transgenic animals; structure and applications of GFP; PCR as a DNA amplification method and diagnostic tool (definition, selected modifications and applications); nucleic acid isolation techniques; molecular cloning procedures; basic molecular tools (vectors, polymerases, ligases, nucleases and other DNA modifying enzymes); restriction endonucleases and their applications; methods of introducing recombinant DNA into cells; methods of selecting positive bacterial clones; nucleic acid sequencing by the chain termination method (Sanger sequencing); selected gene expression systems;

## **Bibliography of literature**

## A. Literature required to pass the course

A.2. Literature for individual studies

- 1. Węgleński, P.: Genetyka molekularna. Wydawnictwo naukowe PWN 2006
- 2. Brown, T.A.: Genomy. Wydawnictwo naukowe PWN 2009
- B. Extracurricular readings

1. Watson, J.D., Myers, R.M., Caudy, A.A., Witkowski, J.A.: Recombinant DNA. Genes and genomes – a short course. 2007.

2. Buckingham, M.L., Flaws, L.: Molecular diagnostics: Fundamentals, Methods and Clinical Applications. 2007

3. Glick, B.R., Pasternak, J.J., Patten, C.L.: Molecular biotechnology: Principles and applications of recombinant DNA. 2009

# Knowledge

- 1. Understands and describes the structure of DNA, RNA and proteins,
- 2. Understands and describes the processes of replication, transcription and translation,
- 3. Describes selected mechanisms of gene expression regulation,
- 4. Lists, characterizes and understands the methods used in molecular biotechnology and genetic engineering,
- 5. Lists basic molecular tools used in genetic engineering.

### Skills

- 1. Designs DNA starters and PCR reaction conditions,
- 2. Analyzes DNA sequences,
- 3. Identifies the sequences recognized by restriction endonucleases and anticipates the DNA restriction fragments obtained with these enzymes,
- 4. Lists potential practical applications of the discussed techniques and molecular tools,
- 5. Proposes the use of specific molecular techniques and molecular tools to solve a problem.



### Social competence

- 1. Understands the need for further education,
- 2. Being cautious and critical when expressing opinions,
- 3. Obtains an awareness of the relationship between human genetic material and human health and life span,
- 4. Realizes and appreciates the possibilities created by modern molecular biotechnology and genetic engineering,
- 5. Understands social, environmental and economic effects and potential risks posed by modern genetic engineering.