

ECTS code **Course title** Wykład dyplomowy - Nowoczesne metody syntezy chemicznej/Diploma 13.3.0421 lecture - Modern methods of chemical synthesis

Name of unit administrating study

Faculty of Chemistry

Studies				
Field of study	Type	Form		
Chemistry	Bachelor	Full-time studies		
Teaching staff			<u>-</u>	

Prof. dr hab. Franciszek Kasprzykowski, dr hab. Elżbieta Jankowska

Forms of classes, the realization and number of hours	ECTS credits
A. Forms of classes, in accordance with the UG Rector's regulations lecture	classes 30 h tutorial classes 5 h student's own work 15 h TOTAL: 50 h - 2 ECTS
B. The realization of activities In-class learning	
C. Number of hours lecture 30 godz,	

The academic cycle

2019/2020 summer semester

2017/2020 Summer Semester			
Type of course	Language of instruction		
optional subject	Polish		
Teaching methods	Form and method of assessment and basic criteria for evaluation or examination requirements		
 Lecture with multimedia presentation 	A. Final evaluation, in accordance with the UG study regulations		
• Solving of problem tasks	Course completion (with a grade)		
	B. Assessment methods		
	-written tests with open questions and problem tasks		
	- the final grade will be based on the partial grades received		
	during the semester (students own work)		
	The basic criteria for evaluation		
	• To pass the course, a positive exam grade and independent correct solution of problem tasks such as synthesis project are required		
	Obtaining a positive grade is possible after achievement of		
	51% of the maximum number of points		

Required courses and introductory requirements

- **A. Formal requirements** Organic Chemistry
- **B.** Prerequisites Knowledge of fundamental terms of organic chemistry: functional groups found in organic compounds, reaction mechanisms characteristic for particular types of organic compounds, the concepts of resonance, acidity and alkalinity in organic chemistry

Aims of education

- familiarization of students with the basic rules of conducting synthesis of organic compounds
- acquaint of students with modern methods used in organic synthesis, allowing the formation of new

carbon-carbon and carbon-heteroatom bonds

- familiarization of students with modern techniques of organic synthesis
- familiarization of students with the concept of "retrosynthesis" developing the ability to design multistage synthesis of organic compounds

Course contents

- basic principles of synthesis of organic compounds: preparation of reagents, monitoring reaction progress, isolation and purification of reaction products, analysis of the final product, keeping laboratory notes
- reactions enabling the formation of new carbon-carbon bonds in molecules (including Heck's reaction, Suzuki reaction, olefin metathesis, Michael's reaction)
- reactions enabling theformation of new carbon-heteroatom bonds (e.g. Sharpless, Mitsunobu, Buchwald-Hartwig reactions)
- modern techniques applied in organic synthesis, including: synthesis on a solid support, microwave synthesis, solvent-free synthesis, synthesis using phase transfer catalysis
- the concept of "synthon", designing pathways for the synthesis of selected organic compounds

Bibliography of literature

A. Literature required to pass the course

A.1. Literature used during classes:

Unpublished materials prepared by the teachers.

- A.2. Literature for individual studies:
- J. Gawroński, K. Gawrońska, K. Kacprzak, M. Kwit, Współczesna synteza organiczna, PWN, Warszawa 2004
- C. Willis, M. Wills, Synteza organiczna, Wyd. Uniwersytetu Jagiellońskiego, Kraków 2004

B. Extracurricular readings

J. Skarżewski - Wprowadzenie do syntezy organicznej, PWN, Warszawa 1999

Knowledge

Student can:

- describe substrates and catalysts needed to carry out reactions discussed in the lectures
- explain general mechanisms of reactions, as well as its regio- and stereoselectivity
- characterize the advantages and disadvantages of modern synthesis techniques discussed in the lectures
- specify methods used to solve common problems encountered during the synthesis, purification and analysis of organic compounds
- defineterms related to synthesis and retrosynthesis of organic compounds

Skills

Student can

- predict the structure of products, structure of substrates and applied reaction conditions
- predict side reactions that make it difficult to obtain the correct product from the given substrates

- evaluate the hazards associated with a given type of reaction and proposes ways to safely carry out the syntheses
- develop a route for the synthesis of specified organic compound

Social competence

- Student understand the need for continuous learning
- Student commit himself in the work of the group in solving project-type tasks
- Student understands the importance of the chemist's attitude and the synthesis techniques he uses in reducing the negative impact of chemistry on the environment