

ECTS code **Course title** Wykład monograficzny - Wprowadzenie do kwantowej chemii komputerowej/Monographic lecture - Introduction into quantum

13.3.0440

Name of unit administrating study

Faculty of Chemistry

computer chemistry

Studies				
Field of study	Туре	Form		
Chemistry	Master	Full-time studies		

Teaching staff

Prof. dr hab. Janusz Rak

Forms of classes, the realization and number of hours **ECTS** credits classes 30 h Forms of classes, in accordance with the UG Rector's tutorial classes 10 h regulations student's own work 35 h lecture TOTAL: 75 h - 3 ECTS B. The realization of activities In-class learning Number of hours Lecture 30 h

The academic cycle

2020/2021 summer semester

Type of course obligatory	Language of instruction Polish	
Teaching methods Lacture with a multimedial presentation	Form and method of assessment and basic criteria for evaluation of examination requirements	
	A. Final evaluation, in accordance with the UG study regulations Course completion (with a grade)	
	B. Assessment methods oral credit, test	
	C. The basic criteria for evaluation or exam requirements	
	Passing with no less than 51% of the maximum score. Those who do not reach the required threshold take an oral examination.	

Required courses and introductory requirements

- a. Formal requirements Chemia fizyczna, chemia kwantowa
- b. Prerequisites Abilities to describe a chemical reaction in the context of thermodynamics and kinetics, basic knowledge on molecular spectroscopy.

Aims of education

Acquisition of the ability to:

- choose an appropriate computational chemistry method to a given chemical problem,
- design a computational algorithm assuring possibly swift solution,
- judge the accuracy of numerical data.

Course contents

Born-Oppenheimer approximation, time independent Schrödinger equation, one-electron approximation, Slater determinant, Hartree-Fock (HF) and Hartree-Fock-Roothan (HFR) methods, semiempirical schemes of the HFR method: CNDO, INDO, NDDO; modified NDDO methods: MNDO, AM1, P<3, M5, RM1, PM6, MNDO/d, SAM1, SAM1d. Basis sets. Electron correlation: configuration interaction, Møller–Plesset perturbation theory (MPn), coupled cluster method (CC). Density functional theory (DFT). Application of HFR and electron correlation methods: choice of the basis set, optimization of molecular geometry, determining reaction enthalpy, harmonic vibrational modes (IR spectrum), NMR shifts and electronic absorption spectrum for a molecular system.

Bibliography of literature

A. Literature required to pass the course

Lucjan Piela "Idee chemii kwantowej", PWN 2003.

Frank Jensen "Introduction to Computational Chemistry", Wiley, 2006.

Christopher J. Cramer "Essentials of Computational Chemistry: Theories and Models", Wiley, 2004

B. Extracurricular readings

Attila Szabo, Neil S. Ostlund "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory", Dover Publi-cations, 1996.

Knowledge

A student:

- has knowledge on concepts, rules and theories functioning in computational chemistry,
- characterizes Hartree-Fock methods and has knowledge on the employed approximations and limitations,
- mentions basis sets used in quantumchemical calculations,
- identifies methods accounting for electron correlation,
- characterizes density functional methods,
- mentions applications of quantum chemistry methods.

Social competence

A student:

- can work independently,
- keeps caution and criticism in expressing opinions