Course title in English	Application of multidimensional NMR
	spectroscopy in determining the structure,
	stereochemistry and conformation of organic
	compounds
Course title in Polish	Zastosowanie wielowymiarowej spektroskopii NMR
	w ustalaniu struktury, stereochemii i konformacji
	związków organicznych
Course code	
Type of course	Lecture/Seminar
Level of course	PhD
Year of study	1-4
Semester/trimester	1/3/5/7
Number of hours/credits	30/2
allocated	
Name of lecturer	Dr hab. Zbigniew Kaczyński, prof. UG
Objective of the course	Knowledge: The student acquires the foundations
(expected learning outcomes	necessary for the interpretation of MS, IR, ¹ H and ¹³ C
and competences to be	quantum-mechanical models used to describe the
acquired)	phenomenon of rotation, oscillation and radiation
	scattering; gains basic knowledge of conformational
	testing of biomolecules; can present current directions
	<i>Skills</i> : The student acquires the ability to identify and
	determine the structure (hydrogen bonds,
	stereochemistry, etc.) of compounds with masses up to
	\sim 1000 D based on the interpretation of their spectra (set of spectra) ¹ H and ¹³ C NMR, 1D and 2D NMR; can
	learn independently and use sources of information.
	Social competence: The student understands the need
	for further education in the "information" society of
	understands the need for ethics, honoring copyright,
	etc.
Prerequisites	-
Course contents	1. ¹ H NMR, theory; instrument and measurement;
	cnemical shift; spin-spin coupling; protons on heteroatoms: exchangeable protons: spin-spin
	heteroatomic couplings; chemical vs magnetic

	equality; spin systems AB-AX, ABC-AMX, chirality; geminal, vicinal and long-range linkages; uncoupling of spins; NOE. 2. ¹³ C NMR, theory; instrument and measurement; chemical shift; DEPT. 3. Correlation (2D-) NMR, COSY, TOCSY, HMQC, HMBC, NOESY, ROESY, INADEQUATE. A PhD student will acquire the ability to freely use the NMR technique to solve the topology and spatial structure of systems with atomic masses up to 2000 Da (peptides, polysaccharides, steroids etc.)
Recommended reading	 Collective under ed. W. Zieliński i A. Rajca: Metody spektroskopowe ich zastosowanie do identyfikacji związków organicznych, WNT W-wa 1995, 2000. R.M. Silverstein, F.X. Webster, D.J. Kiemle:
	Spektroskopowe metody identyfikacji związków organicznych, PWN W-wa 2007
Teaching methods	 lecture with multimedia presentation, auditorium exercises with elements of the seminar individually and / or in small teams: exercises and spectroscopic mini-projects, analysis / interpretation of spectra / spectra sets combined with discussion.
Assessment methods	Doing assignments throughout the course, final exam
Language of instruction	Polish