

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Monographic lecture - Quantum chemistry of molecular anions	13.3.0432
Name of unit administrating study	

null Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	chemia biomedyczna, chemia i technologia środowiska, analityka i
			diagnostyka chemiczna, chemia obliczeniowa
		specialization	wszystkie

Teaching staff

prof. dr hab. Piotr Skurski

prof. of flag. Flott extrem	
Forms of classes, the realization and number of hours	ECTS credits
Forms of classes	3
Lecture	classes 30 h
The realization of activities	tutorial classes 10 h.
classroom instruction	student's own work 35 h
Number of hours	TOTAL: 75 h - 3 ECTS
Lecture: 30 hours	

The academic cycle

2023/2024 winter semester

ZUZU/ZUZT WITICI SCITICSICI	_
Type of course	Language of instruction
obligatory	polish
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
multimedia-based lecture	Final evaluation
	Graded credit
	Assessment methods
	oral course credit
	The basic criteria for evaluation
	Passing the final oral exam covering the issues presented during the lectures

Method of verifying required learning outcomes

Required courses and introductory requirements

A. Formal requirements

quantum chemistry

B. Prerequisites

basic knowledge concerning chemical structure of molecules and chemical bonds

Aims of education

acquainting students with the basic knowledge concerning molecular anions - their classification, properties, and applications

Course contents

Electronic structure of molecular anions, most fundamental properties of molecular anions, classification of anions based on the potential responsible for an excess electron binding, various types of molecular anions: valence-bound anions, multipole-bound anions, metastable anions, multiply charged anions, cluster anions, double-Rydberg anions, solvated electrons. Modern theoretical methods used for studying molecular anions, the most recent discoveries concerning the subject.

The course will provide the knowledge about molecular anions in general and various types of negatively charged systems in particular. In addition,

Wykład monograficzny - Chemia kwantowa anionów molekularnych #13.3.0432

Sylabusy - Centrum Informatyczne UG

the proper selection of theoretical methods appropriate for studying certain types of anions will be explained. The course will also cover the problem of electronic, kinetic and thermodynamic stability of anions

Bibliography of literature

Literature required to pass the course

A.1. Literature used during classes:

Theoretical Prospects of Negative Ions, ed. J. Kalcher, Research Signpost, Trivandrum,

2002, An Introduction to Theoretical Chemistry, Jack Simons, Cambridge University Press, 2003.

A.2. Literature for individual studies :

Theoretical Prospects of Negative Ions, ed. J. Kalcher, Research Signpost,

Trivandrum, 2002, An Introduction to Theoretical Chemistry, Jack Simons, Cambridge University Press, 2003.

The learning outcomes (for the field of study and
specialization)

Knowledge

the student defines the basic types of anions and explains their stability by characterizing the most important interactions responsible for an excess electron binding; the student is capable of describing the most important theoretical methods utilized for studying negatively charged systems.

Skills

Social competence

After the course, the students are expected to understand the necessity of further learning, they are also taught to approach the problems and formulate their opinions with caution and criticism. In addition, the students are expected to remain openminded for new ideas.

Contact

piotr.skurski@ug.edu.pl