

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Course title	ECTS code
Coordinative chemistry	13.3.0407
Name of unit administrating attribut	

Name of unit administrating study

Faculty of Chemistry

Studies

faculty	field of study	type	drugiego stopnia
Wydział Chemii	Chemia	form	stacjonarne
		specialty	analityka i diagnostyka chemiczna
		specialization	wszystkie

Teaching staff

dr inż. Krzysztof Żamoić

di inz. Nizysztoi zamojo		
Forms of classes, the realization and number of hours	ECTS credits	
Forms of classes	3	
Lecture	classes - 30 h	
The realization of activities	tutorial classes – 10 h	
classroom instruction	student's own work – 35 h	
Number of hours		
Lecture: 30 hours	Total: 75 h - 3 ECTS	

The academic cycle

2022/2023 summer semester

2022/2023 summer semester	
Type of course	Language of instruction
obligatory	polish
Teaching methods	Form and method of assessment and basic criteria for eveluation or examination requirements
multimedia-based lecture	Final evaluation
	Examination
	Assessment methods
	- written exam with open questions
	- written exam (test)
	The basic criteria for evaluation
	A positive note from a single-choice test with approximately 60 questions.

Method of verifying required learning outcomes

The method of verifying the acquisition of knowledge: written single-choice test in the field of coordinative chemistry.

The method of verifying the acquisition of skills: assessment of the student's involvement in discussions on the issues related to the subject.

The method of verifying the acquisition of social competences: assessment of the student's ability to solve scientific and research problems on the basis of individual work.

Required courses and introductory requirements

A. Formal requirements

None.

B. Prerequisites

The basics of general and inorganic chemistry.

Aims of education

Familiarize students with the basic aspects of coordinative chemistry

Course contents

Basic concepts of coordinative chemistry; coordination numbers and corresponding structures of complexes; nomenclature of coordination compounds; isomerism of coordination compounds; equilibria in aqueous solutions of complexes; stability constants of complexes in aqueous

Chemia koordynacyjna #13.3.0407

Sylabusy - Centrum Informatyczne UG

solutions; the kinetics and mechanism of ligands' exchange in complexes; oxidation and reduction reaction of coordination compounds; valence bond theory in coordination compounds; ligand field and molecular orbital theories in coordination compounds; spectroscopic and magnetic properties of metal complexes; complexes in nature and human activity.

Bibliography of literature

Literature required to pass the course:

- 1.M. Cieślak-Golonka, J. Starosta, M. Wasielewski, Wstęp do chemii koordynacyjnej, Wydawnictwo Naukowe PWN, Warszawa 2010
- 2.A. Bielański, Podstawy chemii nieorganicznej, cz. 2 i 3, Wydawnictwo Naukowe PWN, Warszawa 1998 Extracurricular readings:
- 3.S. F. A. Kettle, Fizyczna chemia nieorganiczna na przykładzie chemii koordynacyjnej, Wydawnictwo Naukowe PWN, Warszawa 1999
- 4.W. Starodub, T. Starodub, J. Oszczudłowski, Chemia zwiazków koordynacyjnych, Wydawnictwo Naukowe PWN, Warszawa 2017
- 5.L. Kolditz, Chemia nieorganiczna, cz. 1, Wydawnictwo Naukowe PWN, Warszawa 1994
- 6.R. P. Houghton, Kompleksy metali w chemii organicznej, Wydawnictwo Naukowe PWN, Warszawa 1985
- 7.S. J. Lippard, J. M. Berg, Podstawy chemii bionieorganicznej, Wydawnictwo Naukowe PWN, Warszawa 1998
- 8.P. Atkins, L. Jones, Chemistry: molecules, matter, and change, 3rd ed., W. H. Freeman and Company, New York 1997
- 9.J. A. McCleverty, T. J. Meyer, Comprehensive coordination chemistry, Elsevier, 2004
- 10.J. R. Gispert, Coordination chemistry, Wiley, 2008
- 11.V. Gutman, Coordination chemistry in non-aqueous solutions, Springer, 2007
- 12.E. Constable, Coordination chemistry of macrocyclic compounds, Oxford University Press, 1991

The learning outcomes (for the field of study and specialization)

K_W01: uses in-depth knowledge of spectroscopic methods of chemical compound analysis;

K_W04: applies the acquired knowledge to an in-depth description of the properties of chemical connections, methods of their synthesis and analysis;

K_W05: has extended knowledge in the field of the specialisation studied:

K_K01: knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so;

Knowledge

Student: knows basic concepts of coordinative chemistry; determines possible structure of the complex based on the value of coordination number; can name coordination compounds; can distinguish the main types of isomerism of coordination compounds; understands how equilibria in aqueous solutions of complexes are established; knows, what factors influence on the values of stability constants of complexes in aqueous solutions; understands what is the kinetics and mechanism of ligands' exchange in complexes; writes basic oxidation and reduction reactions of coordination compounds; knows and understands valence bond theory in coordination compounds; knows and understands crystal field theory in coordination compounds; knows and understands ligand field and molecular orbital theories in coordination compounds; can explain spectroscopic and magnetic properties of metal complexes; mentions the most important complexes in nature and human activity.

Skills

Student: interprets and analyzes information connected with coordinative chemistry presented as text, tables, figures, plots or schemes; finds necessary information in specialist literature.

Social competence

Student: knows the limitations of her/his own knowledge; understands the need for further education and can inspire other people to do so; understands the need for independent search of information in scientific literature; can ask appropriate questions.

Contact

krzysztof.zamojc@ug.edu.pl