



Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego



| Course title                       | ECTS code |  |  |  |
|------------------------------------|-----------|--|--|--|
| Omics analysis in chemoinformatics | 13.3.1304 |  |  |  |
| Name of unit administrating study  |           |  |  |  |
| null                               |           |  |  |  |

## **Studies**

| faculty              | field of study | type           | second tier studies (MA) |
|----------------------|----------------|----------------|--------------------------|
| Faculty of Chemistry | Chemistry      | form           | full-time                |
|                      |                | specialty      | all                      |
|                      |                | specialization | all                      |

## **Teaching staff**

dr Agnieszka Gajewicz-Skretna; prof. dr hab. Tomasz Puzyn; mgr Alicja Mikołajczyk; dr inż. Karolina Jagiełło

| at 7 tg: 1002 tta 0 ajott 102 ott qui at proti at 11 ao 11 ao 11 a 27 tt july 11 ajott 11 a | terajo 2 j.t., ar m. 2 rtaro m. a o agrono |
|---------------------------------------------------------------------------------------------|--------------------------------------------|
| Forms of classes, the realization and number of hours                                       | ECTS credits                               |
| Forms of classes                                                                            | 2                                          |
| Auditorium classes                                                                          | auditorium classes - 30 h                  |
| The realization of activities                                                               | student's own work – 10 h                  |
| classroom instruction                                                                       | tutorial classes – 10 h                    |
| Number of hours                                                                             |                                            |
| Auditorium classes: 30 hours                                                                | Total: 50 h - 2 ECTS                       |

# The academic cycle

2022/2023 summer semester

| 2022/2023 summer semester                                                                                                                                        |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Type of course                                                                                                                                                   | Language of instruction                                                                     |
| an elective course                                                                                                                                               | english                                                                                     |
| Teaching methods  •In the computational laboratory students will conduct hands on exercises  •project-based method (research, implementation, practical project) | Form and method of assessment and basic criteria for eveluation or examination requirements |
|                                                                                                                                                                  |                                                                                             |
|                                                                                                                                                                  | Graded credit                                                                               |
|                                                                                                                                                                  | Assessment methods                                                                          |
|                                                                                                                                                                  | completion of the final project                                                             |
|                                                                                                                                                                  | - completion of all assigned projects during classes in the computer lab                    |
|                                                                                                                                                                  | - written report for each assigned project                                                  |
|                                                                                                                                                                  | The basic criteria for evaluation                                                           |
|                                                                                                                                                                  | Assessment criteria in accordance with the University of Gdańsk Study Regulations           |
|                                                                                                                                                                  | - correctness of the reports on assigned projects, the final grade of the lab. is based on  |

# Method of verifying required learning outcomes

presentation of the final project (K\_W03, K\_W04, K\_W11)

- Discussion with the students (K\_U04, K\_U05, K\_U06).
- Observation of the student's behavior during classes and during consultations. (K\_K04)

## Required courses and introductory requirements

# A. Formal requirements

none

# B. Prerequisites

Repetitory in mathematics; Repetitory in general and inorganic chemistry, Repetitory in organic chemistry and biochemistry

## Aims of education

Familiarizing the students with techniques of omics data analysis and their importance in predicting biological responses induce by stressor at the

the partial grades received from each report and presentation of the final project; failure

to complete the experimental part means failing the laboratory exercises

# Omics analysis in chemoinformatics #13.3.1304

Sylabusy - Centrum Informatyczne UG Dział Kształcenia



molecular level

Familiarizing the students with Python/R scripts used in omics data analysis

#### **Course contents**

Introduction to available transcriptomic/proteomic/metabolomic databases, e.g., AOPWiki, GEO databases

Curation and preprocessing of omics data.

Advanced unsupervised and supervised method in omics data analysis

Adverse Outcome Pathways – the novel approach in selecting endpoints for chemoinformatic models

Tools for determining doses induced perturbation in gene expression

Predicting biological response induced by stressor at the molecular level

## Bibliography of literature

Literature required to pass the course

Scientific publication in the field

B. Extracurricular readings

S.P. Putri, E. Fukusaki (Eds) "Mass Spectrometry-Based Metabolomics: A Practical Guide", CRC Press, Taylor & Francis, Boca Raton, 2014

N. Lutz, J. Sweedler, R. Wevers "Methodologies for Metabolomics: Experimental Strategies and Techniques", Cambridge University Press, Nowy Jork. 2012

# The learning outcomes (for the field of study and specialization)

K\_W03: demonstrates in-depth knowledge in the field of modern measuring techniques used in chemical analysis

K\_W04: applies the acquired knowledge to an in-depth description of the properties of chemical connections, methods of their synthesis and analysis

K\_W11: demonstrates in-depth knowledge about the current trends in the development of chemistry as a science and the latest discoveries in this field

K\_U04: applies acquired knowledge of chemistry and related scientific disciplines

K\_U05: presents the results of research in the form of an independently written paper containing a description and justification of the purpose of the work, adopted methodology, results and their significance in comparison to other similar research

K\_U06: presents the results of scientific discoveries in chemistry and related disciplines in an understandable way

K\_K04: correctly identifies and resolves dilemmas related to the profession of a chemist

# Knowledge

At the end of the course every student:

Knows advanced methods applied for omics data curation, preprocessing and analysis

knows basic software packages to be used for omics data analysis

### **Skills**

At the end of the course every student:

uses Python/R environment for omics data analysis and applying them for chemoinformatic models

correctly interprets the results based on omics data

## Social competence

At the end of the course every student:

is convinced that the use of omics data strengthens the predicting biological response induced by chemicals at the molecular level

can critically evaluate experimental results and understand the necessity of their control

understands the need of deeper learning in computational data analysis and developing predictive models

## Contact

agnieszka.gajewicz@ug.edu.pl