

Course title

Graduate study lecture – Methods of physicochemical analysis of inorganic and hybrid compounds / Wykład specjalizacyjny – Metody analizy właściwości fizykochemicznych związków nieorganicznych i ich układów hybrydowych

ECTS code

13.3.1171

Name of unit administrating study

Faculty of Chemistry

Studies				
Field of study	Type	Form		
Chemistry	Master	Full-time studies		

Teaching staff

Prof. dr hab. inż. Lech Chmurzyński, dr hab. Joanna Makowska, prof UG, dr hab. Dariusz Wyrzykowski, dr inż. Krzysztof Żamojć

Forms of classes, the realization and number of hours	ECTS credits 3
A. Forms of classes, in accordance with the UG Rector's	classes - 30 h
regulations	tutorial classes – 10 h
lecture	student's own work – 35 h
B. The realization of activities	
In-class learning	Total: 75 h - 3 ECTS
C. Number of hours	7 Total. 13 II - 3 LC 15
30 h lecture	

The academic cycle

First year, summer semester

Type of course Obligatory	Language of instruction Polish	
Teaching methods	Form and method of assessment and basic criteria for evaluation or examination requirements	
Lecture with multimedia presentation	A. Final evaluation, in accordance with the UG study regulations Graded assignment	
	B. Assessment methods End-term test	
	C. The basic criteria for evaluation or exam requirements	
	Positive grade from the colloquium on the topic presented in the lecture based on program content.	

Required courses and introductory requirements

Formal requirements

Prerequisites

- knowledge of the sources of absorption spectra of inorganic compounds, knowledge of the vocabulary used in chemical spectroscopy; competences in interpretation of UV-Vis and IR spectra, knowledge of basic instrumental techniques; Basic knowledge of the structure and properties of amino acids and peptides

Aims of education

acquire all of the issues listed in the contents of the lecture program

Course contents

Evaluation of measurement errors. Basics of potentiometry; the use of potentiometric method to determine the values of acid-base and complex equilibrium constants in solutions; the use of theoretical methods for the estimation of the potentiometric curves; methods to phase transitions studies in biologically active compounds with the use of the differential scanning calorimetry; circular dichroism; energy effects of physical and chemical changes; definitions and abbreviations used in the thermal analysis, examples; isothermal titration calorimetry; the scheme and operating principles of the TG, DTA and DSC anlyzer; UV-vis spectroscopy, fluorescence spectroscopy and NMR spectroscopy in chemical analysis; the use of theoretical methods to determine the values of acid-base equilibrium constants.

Bibliography of literature

A. Literature required to pass the course

A. Literatura wymagana do ostatecznego zaliczenia zajęć (zdania egzaminu):

A.1. wykorzystywana podczas zajęć

http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/uvvisab1.htm

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/UV-Vis/spectrum.htm

A2. Literatura studiowana samodzielnie przez studenta:

- D. A. Skoog, D.M. West, F.J. Holler Fudamentals of Analytical Chemistry
- J. Kenkel Analytical Chemistry for Technicians
- T. Jasiński Analiza miareczkowa w środowiskach niewodnych
- J. Minczewski, Z. Łada Miareczkowanie potencjometryczne
- J. Minczewski, Z. Marczenko Chemia analityczna
- S.F.A. Kettle Fizyczna chemia nieorganiczna
- S.J. Lippard, J.M. Berg Podstawy chemii bionieorganicznej
- G.W.H. Höhne, W.F. Hemminger, H.J. Flammersheim Differential Scanning Calorimetry
- A. Molski Wprowadzenie do kinetyki chemicznej
- B. Extracurricular readings

Knowledge

The student

- knows the methodology for determining the structure of chemical compounds and basic spectral methods (infrared spectroscopy, UV-VIS spectroscopy);
- knows the basic classification systems for liquid chemical reaction environments:
- knows and understands the processes of acid-base interactions occurring in non-aqueous environments;
- understands the theory of hydrogen bonding and proton transfer equilibria in non-aqueous environments;
- knows the basic instrumental methods of testing equilibrium in non-aqueous environments;
- knows the theoretical methods enabling the study of the effect of pH and solvent type on the conformation of model peptides and a method for predicting the course of potentiometric titration curves and determining pKa constants for peptide systems;
- knows the correct nomenclature and chemical symbols used in thermal analysis and calorimetry;
- knows the techniques used in thermal analysis and calorimetry;
- knows the elements of chemistry of complex single-core compounds;
- understands the equilibrium of formation of single-core complexes and knows the methodology for determining the stability constants of acid-base single-core complexes by spectrophotometric and potentiometric methods;
- knows the hydrogen bond characteristics along with the occurrence (inorganic and organic compounds);
- knows measurement techniques enabling finding hydrogen bond in a chemical compound (infrared spectroscopy, 1H-NMR, fluorescence, UV and UV-VIS spectroscopy, potentiometry, conductometry, calculation methods, calorimetry, dielectric studies, diffraction studies);
- knows the division of amino acids due to the structure of the side chain and understands models for describing hydrophobic association.

Skills

The student has the ability to critically evaluate the results of conducted experiments, observations and / or theoretical calculations.

Social competence

The student understands the need for lifelong learning, inspires and organizes the learning process of others; is able to use chemical knowledge in correlation with other natural sciences to explain the course of phenomena encountered in everyday life.