

Course titleECTS codeFizyka I / Physics I13.3.0714

Name of unit administrating study

Faculty of Chemistry

	St	udies	
Field of study	Type	Form	
-			
Chemical Business	Bachelor / Engineer	Full-time studies	

Teaching staff

Prof. dr hab. Marek Grinberg

Forms of classes, the realization and number	ber of hours ECTS credits 5
A. Forms of classes, in accordance wit	h the UG Rector's classes - 60 h
regulations	tutorial classes – 10 h
lecture, auditorium classes	student's own work – 55 h
B. The realization of activities in-class learning	Total, 105 h 5 ECTS
C. Number of hours 60 h (30 h lecture, 30 h auditorium cl	Total: 125 h - 5 ECTS asses)

The academic cycle

First year, winter semester

Type of course	Language of instruction
obligatory	Polish
Teaching methods	Form and method of assessment and basic criteria for evaluation or examination requirements
Lecture Solving tasks Discussion	A. Final evaluation, in accordance with the UG study regulations lecture – exam auditorium classes – course completion (with a grade)
Lecture with multimedia presentation	B. Assessment methods Written exam with open questions (tasks) Oral exam Oral test Test Establishing a final grade based on partial grades received during the semester D. The basic criteria for evaluation or exam requirements
	Passing two tests.

Required courses and introductory requirements Lack

Aims of education

Mastering the basic laws, theories and mathematical methods in the field of physics

Course contents

- 1 The basics of classical mechanics
- kinematics and dynamics, Newton's laws, the concept of kinetic and potential energy, the concept of momentum, angular momentum. Conservation lows
- 2. Elements of hydrodynamics
- 3. Vibrations and mechanical waves in elastic media Harmonic motion, wave motion, wave vector, phase velocity and group wave speed, polarization and interference
- 4. Electricity and magnetism, electromagnetic waves

5. Elements of geometrical and wave optics
--

6. Electrotechnical elements (Ohm's law, Kirchhoff's law, current and voltage measurements)

Bibliography of literature

A. Literature required to pass the course

- A. Bałanda, Fizyka dla chemików, skrypt UJ, Kraków 1994.
- D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, PWN, Warszawa, 2005
- J. O'Rear, Fizyka t.1. i 2

B. Extracurricular readings

Knowledge

the student known and understand basic laws and theories in the field of physics;

- has the knowledge necessary to understand and describe the physical processes important for the understanding of chemistry;
- knows the basic calculation methods necessary to solve physics problems

Skills

- the student can solve basic tasks (transform and output patterns)
- the student is able to learn independently

Social competence

- the student identifies the level of his/her knowledge and skills, the need for continuous training and personal development, understand the practical applications of physics