

Course title ECTS code Biochemia / Biochemistry 13.3.0719 Name of unit administrating study Faculty of Chemistry Studies Field of study Type **Form** Chemical Business Bachelor / Engineer Full-time studies **Teaching staff** Prof. dr hab. Krzysztof Rolka Forms of classes, the realization and number of hours ECTS credits 4 classes - 60 h A. Forms of classes, in accordance with the UG Rector's regulations tutorial classes – 10 h lecture, auditorium classes, laboratory classes student's own work - 30 h B. The realization of activities in-class learning Total: 100 h - 4 ECTS C. Number of hours 60 h (30 h lecture, 15 h auditorium classes, 15 h laboratory classes) The academic cycle Second year, summer semester Type of course Language of instruction obligatory Polish Form and method of assessment and basic criteria for evaluation or **Teaching methods** examination requirements Lecture with multimedia presentation A. Final evaluation, in accordance with the UG study regulations Problem-solving tutorials Laboratory experiments lecture - exam auditorium classes – course completion (with a grade) laboratory classes – course completion (with a grade) B. Assessment methods Written exam with open questions C. The basic criteria for evaluation or exam requirements • positive grade received in written exam composed of 5-10 open questions covering issues listed in the course contents; answers to these questions will require solving tasks specified in educational outcomes; the grading scale would be adjusted to the range of all rated exams • to take the exam both the laboratory classes and tutorials must be passed; **Tutorials:** • passing two written colloquiums covering: (1) chemical structures and properties of amino acids, peptides and proteins (2) chemical structure and properties of monosaccharides, polysaccharides, lipids, cell membranes and nucleic acids; • each negative grade should be improved at repeat colloquium. Laboratory classes: • positive grade received in 3 preliminary testes, that check knowledge required to perform experiments during the classes; accomplishment of all planned experimental work (quality of laboratory work, ability to team work and mode of work would be graded); analysis of obtained results performed as written report; • to complete the laboratory course each negative grade must be improved. Required courses and introductory requirements

Organic chemistry (bachelor level)

Fundamentals of organic chemistry, skills to work in a chemical laboratory, knowledge of basic laboratory glassware, learning the principles of work in a biochemical laboratory

Aims of education

- to acquaint students with all issues mentioned in the lecture contents;
- to introduce students to the basic endogenous organic compounds, their structure and functions;
- to acquaint students with basic metabolic pathways and relations between them;
- to teach students how to perform biochemical experiments using delivered instructions;
- to develop the ability to critically asses and interpret obtained experimental results and analysis of scientific sources;

A. Lecture: Energy-rich compounds, thermodynamics of biochemical reactions. Classification, structures and functions of enzymes. Mechanisms of enzyme catalysis. Carbohydrates, lipids and proteins – structures and functions. Biological membranes – structure and functions. Metabolic pathways: glycolysis, gluconeo-genesis, pyruvate decarboxylation, Krebs cycle, oxidative phosphorylation, glycogen metabolism, fatty ac-ids metabolism, amino acids metabolism, pentose phosphate pathway. Proteins G and signal transduction. Photosynthesis. DNA and RNA: replication, transcription, translation, PCR. Basics of genetic engineering. B. Tutorial: Chemical structure, physicochemical properties and biological functions of peptides, proteins, nucleic acids, phospholipids, mono- and polysaccharides.

C. The lab: completion of five experiments with the following topics: determination of activity of serine proteinases and their inhibitors using chromogenic substrates, determination of kinetic parameters of select-ed chromogenic substrate, separation of proteins by size-exclusion chromatography, phospholipid analysis by thin layer chromatography, determination of polysaccharides susceptibility to hydrolysis in low pH

Bibliography of literature

A. Literature required to pass the course

J. M. Berg, J. L. Tymoczko, L. Stryer, "Biochemia", PWN, Warszawa 2009

Monographic works provided by assistants leading classes

B. Extracurricular readings

Various academic handbooks concerning biochemistry

Knowledge

- 1. Defines and demonstrates chemical structure of basic groups of bio- and macromolecules;
- 2. Describes and illustrates main metabolic pathways using chemical reactions, explains their importance for the body functioning;
- 3. Characterizes basic analytical methods of endogenous, organic compounds;
- 4. Characterizes methods of determination of enzymatic activity of selected proteases;
- 5. Recognizes basic laboratory equipment;
- 6. Understands influence of diet on physical condition of the body;

Skills

- 1. Uses chemical terminology necessary to present (both in oral and written form) the content presented in the course;
- 2. Has the ability to predict the course and products of metabolic pathways;
- 3. Predicts physicochemical and biological properties of organic compounds based on their chemical formulas;
- 4. Uses the basic analytical techniques applied for the analysis of endogenous organic compounds;
- 5. Designs and performs simple biochemical experiments, using appropriate laboratory equipment;
- 6. Analyzes the results of performed experiments, draws conclusions about the correctness of their course;

Social competence

- 1. Understands the need of continuous education;
- 2. Takes care of laboratory equipment;
- 3. Carefully uses laboratory equipment and works cautiously with chemicals;
- 4. Appreciates the need of ability to team work according to assigned role (team leader/team member);
- 5. Is aware of the need of critical analysis of own work;
- 6. Shows cautious criticism when acquiring knowledge, especially these coming from mass media;
- 7. Is aware of the necessity of fair and reliable work;