

Course title Wykład dyplomowy - Podstawy i	inżynierii genetycznej/Di	iploma lecture	ECTS code - 13.3.0908	
Essentials of genetic engineering				
Name of unit administrating study				
Faculty of Chemistry				
Studies				
Field of study	Туре		Form	
Chemistry	Bachelor F		full-time studies	
Teaching staff Dr hab. Agnieszka Żylicz-Stachula, prof. UG				
Forms of classes, the realization		ECTS credits classes 30 h tutorial classes 5 h student's own work 15 h TOTAL: 50 h - 2 ECTS		
A. Forms of classes, in accorregulations lecture	ctor's			
 B. The realization of activit In-class learning C. Number of hours lecture 30 h 				
The academic cycle Third year, summer semester				
Type of course obligatory		Language of instruction Polish		
Teaching methods		Form and method of assessment and basic criteria for evaluation or examination requirements		
Lectures including multimodal presentations		A. Final evaluation, in accordance with the UG study regulations Course completion (with a grade)		
		B. Assessment methods		
		test		
		 final written test consisting of test questions, open tasks and simulation exercises, covering issues mentioned in the lecture's program content 		
		• final grade according to the scale of grades given in the Study Regulations		
		• supplementary written evaluation for students who did not obtain the required 51% in the first term		
Required courses and introduct A. Formal requiremen	tory requirements ts General Chemistr	ry, Organic (Chemistry, Biochem	istry, General Microbiology

B. **Prerequisites** proper use of the chemical/biological terminology and nomenclature, knowledge of the basic functions and structure of the prokaryotic and eukaryotic cell, knowledge of cellular biochemical processes

Aims of education

- acquainting students with all issues mentioned in the lecture's program content
- acquainting students with the basic properties of biological macromolecules: DNA, RNA and proteins;

- acquainting students with selected mechanisms of genetic regulation in gene expression;
- acquainting students with the current possibilities, limitations and the anticipated trends in modern genetic engineering and molecular biotechnology

Course contents

genetic engineering and molecular biotechnology: concepts, history, achievements, perspectives, threats; recombinant microorganisms and transgenic animals; structure and applications of GFP; PCR as a DNA amplification method and diagnostic tool (definition, selected modifications and applications); nucleic acid isolation techniques; molecular cloning procedures; basic molecular tools (vectors, polymerases, ligases, nucleases and other DNA modifying enzymes); restriction endonucleases and their applications; methods of introducing recombinant DNA into cells; methods of selecting positive bacterial clones; nucleic acid sequencing by the chain termination method (Sanger sequencing); selected gene expression systems;

Bibliography of literature

A. Literature required to pass the course

A.2. Literature for individual studies

- 1. Węgleński, P.: Genetyka molekularna. Wydawnictwo naukowe PWN 2006
- 2. Brown, T.A.: Genomy. Wydawnictwo naukowe PWN 2009
- B. Extracurricular readings

1. Watson, J.D., Myers, R.M., Caudy, A.A., Witkowski, J.A.: Recombinant DNA. Genes and genomes – a short course. 2007.

2. Buckingham, M.L., Flaws, L.: Molecular diagnostics: Fundamentals, Methods and Clinical Applications. 2007

3. Glick, B.R., Pasternak, J.J., Patten, C.L.: Molecular biotechnology: Principles and applications of recombinant DNA. 2009

Knowledge

- 1. Understands and describes the structure of DNA, RNA and proteins,
- 2. Understands and describes the processes of replication, transcription and translation,
- 3. Describes selected mechanisms of gene expression regulation,
- 4. Lists, characterizes and understands the methods used in molecular biotechnology and genetic engineering,
- 5. Lists basic molecular tools used in genetic engineering.

Skills

- 1. Designs DNA starters and PCR reaction conditions,
- 2. Analyzes DNA sequences,
- 3. Identifies the sequences recognized by restriction endonucleases and anticipates the DNA restriction fragments obtained with these enzymes,
- 4. Lists potential practical applications of the discussed techniques and molecular tools,
- 5. Proposes the use of specific molecular techniques and molecular tools to solve a problem.

Social competence

- 1. Understands the need for further education,
- 2. Being cautious and critical when expressing opinions,
- 3. Obtains an awareness of the relationship between human genetic material and human health and life span,
- 4. Realizes and appreciates the possibilities created by modern molecular biotechnology and genetic engineering,
- 5. Understands social, environmental and economic effects and potential risks posed by modern genetic engineering.